Kamis, 19 Juni 2008

Things You Can do To Reduce Global Warming

Take Action!

There are many things you can do in your daily life that can have an effect on your immediate surrounding, and on places as far away as Antarctica. Here is a list of things that you can do to make a difference.

There are many things you can do today to reduce your own adding to on this problem!

Tropical Tree Growth Slowed
O
ther big changes are being monitored in the tropics, too. Data on tree growth, tropical air temperatures and CO2 readings collected over 16 years indicate that a warming climate may cause the tropical forests to give off more carbon dioxide than they take up. This would upset the common belief that tropical forests are always a counterbalance to carbon, taking huge amounts out of the atmosphere. The study, by Deborah and David Clark of the La Selva Biological Station in Costa Rica, and Charles Keeling and Stephen Piper of the Scripps Institution, reports that rainforest trees grow much more slowly in warmer nighttime temperatures, which is a hallmark of climate change in the tropics.
Tropical Tree Charles Keeling

Landscaping Your Home for Energy Efficiency
In Winter, by maximizing solar heating while deflecting winds away from your home; and
in Summer by maximizing shading while funneling breezes toward your home. [Source]

Buy a Hybrid Car
The average driver could save 16,000 lbs. of carbon dioxide and $3,750 per year driving a hybrid.

Buy a Fuel Efficient Car
Getting a few extra miles per gallon makes a big difference. Save thousands of lbs. of carbon dioxide and a lot of money per year.

Carpool When You Can
Own a big vehicle? Carpooling with friends and co-workers saves fuel. Save 790 lbs. of carbon dioxide and hundreds of dollars per year.

Inflate Your Tires
Keep the tires on your car adequately inflated. Save 250 lbs. of carbon dioxide and $840 per year.

Change Your Air Filter
Check your car's air filter monthly. Save 800 lbs. of carbon dioxide and $130 per year.

Reduce Garbage

Buy products with less packaging and recycle paper, plastic and glass. Save 2,000 lbs. of carbon dioxide per year.
Composting helps reduce greenhouse gas emissions by reducing the number of trips trucks must make to the landfill as well as the amount of methane released by our landfills.

Use Recycled Paper

Make sure your printer paper is 100% post consumer recycled paper. Save 5 lbs. of carbon dioxide per ream of paper.

Buy Minimally Packaged Goods

Less packaging could reduce your garbage by about 10%. Save 1,200 pounds of carbon dioxide and $1,000 per year.

Unplug Un-used Electronics

Even when electronic devices are turned off, they use energy. Save over 1,000 lbs of carbon dioxide and $150 per year.

Plant a Tree

Trees provide a microclimate and sustained moisture for you. Trees suck up carbon dioxide and make clean air for us to breath. Save 2,000 lbs. of carbon dioxide per year.
Use Compact Fluorescent Bulbs
Replace 3 frequently used light bulbs with compact fluorescent bulbs. Save 300 lbs. of carbon dioxide and $60 per year.

Fill the Dishwasher

Run your dishwasher only with a full load. Save 100 lbs. of carbon dioxide and $40 per year.

Adjust Your Thermostat

Move your heater thermostat down two degrees in winter and up two degrees in the summer. Save 2000 lbs of carbon dioxide and $98 per year.

Check Your Waterheater

Keep your water heater thermostat no higher than 120EF. Save 550 lbs. of carbon dioxide and $30 per year.

Change the AC Filter

Clean or replace dirty air conditioner filters as recommended. Save 350 lbs. of carbon dioxide and $150 per year.

Take Shorter Showers

Showers account for 2/3 of all water heating costs. Save 350 lbs. of carbon dioxide and $99 per year.

Install a Low-Flow Showerhead

Using less water in the shower means less energy to heat the water. Save 350 lbs. of carbon dioxide and $150.

Buy Products Locally

Buy locally and reduce the amount of energy required to drive your products to your store.

Buy Energy Certificates
Help spur the renewable energy market and cut global warming pollution by buying wind certificates and green tags.

Insulate Your Water Heater
Keep your water heater insulated could save 1,000 lbs. of carbon dioxide and $40 per year.

Replace Old Appliances
Inefficient appliances waste energy. Save hundreds of lbs. of carbon dioxide and hundreds of dollars per year.

Weatherize Your Home
Caulk and weather strip your doorways and windows. Save 1,700 lbs. of carbon dioxide and $274 per year.

Use a Push Mower
Use your muscles instead of fossil fuels and get some exercise. Save 80 lbs of carbon dioxide and x $ per year.

Put on a Sweater
Instead of turning up the heat in your home, wear more clothes Save 1,000 lbs. of carbon dioxide and $250 per year.

Insulate Your Home
Make sure your walls and ceilings are insulated. Save 2,000 lbs. of carbon dioxide and $245 per year.

Air Dry Your Clothes
Line-dry your clothes in the spring and summer instead of using the dryer. Save 700 lbs. of carbon dioxide and $75 per year.

Switch to a Tankless Water Heater
Your water will be heated as you use it rather than keeping a tank of hot water. Save 300 lbs. of carbon dioxide and $390 per year.

Switch to Double Pane Windows
Double pane windows keep more heat inside your home so you use less energy. Save 10,000 lbs. of carbon dioxide and $436 per year.

Buy Organic Food
The chemicals used in modern agriculture pollute the water supply, and require energy to produce.

Bring Cloth Bags to the Market
Using your own cloth bag instead of plastic or paper bags reduces waste and requires no additional energy.

There are many simple things you can do in your daily life that can have an effect on your immediate surrounding, and on places as far away as Antarctica. Here is a list of few things that you can do to make a difference.

Use Compact Fluorescent Bulbs: Replace 3 frequently used light bulbs with compact fluorescent bulbs. Save 300 lbs. of carbon dioxide and $60 per year.

Inflate Your Tires: Keep the tires on your car adequately inflated. Check them monthly. Save 250 lbs. of carbon dioxide and $840 per year.

Change Your Air Filter: Check your car's air filter monthly. Save 800 lbs. of carbon dioxide and $130 per year.

Fill the Dishwasher: Run your dishwasher only with a full load. Save 100 lbs. of carbon dioxide and $40 per year.

Use Recycled Paper: Make sure your printer paper is 100% post consumer recycled paper. Save 5 lbs. of carbon dioxide per ream of paper.

Adjust Your Thermostat: Move your heater thermostat down two degrees in winter and up two degrees in the summer. Save 2000 lbs of carbon dioxide and $98 per year.

Check Your Water Heater: Keep your water heater thermostat no higher than 120EF. Save 550 lbs. of carbon dioxide and $30 per year.

Change the AC Filter: Clean or replace dirty air conditioner filters as recommended. Save 350 lbs. of carbon dioxide and $150 per year.

Take Shorter Showers: Showers account for 2/3 of all water heating costs. Save 350 lbs. of carbon dioxide and $99 per year.

Install a Low-Flow Showerhead: Using less water in the shower means less energy to heat the water. Save 350 lbs. of carbon dioxide and $150.

Buy Products Locally: Buy locally and reduce the amount of energy required to drive your products to your store.

Buy Energy Certificates: Help spur the renewable energy market and cut global warming pollution by buying wind certificates and green tags.

Buy Minimally Packaged Goods: Less packaging could reduce your garbage by about 10%. Save 1,200 pounds of carbon dioxide and $1,000 per year.

Buy a Hybrid Car: The average driver could save 16,000 lbs. of CO2 and $3,750 per year driving a hybrid. (Note: E85 fuel, derived from corn, is available in most US states, but in ZERO New England states. See LiveGreenGoYellow.com for more info.)

Buy a Fuel Efficient Car: Getting a few extra miles per gallon makes a big difference. Save thousands of lbs. of CO2 and a lot of money per year.

Carpool When You Can: Own a big vehicle? Carpooling with friends and co-workers saves fuel. Save 790 lbs. of carbon dioxide and hundreds of dollars per year.

Reduce Garbage: Buy products with less packaging and recycle paper, plastic and glass. Save 1,000 lbs. of carbon dioxide per year.

Plant a Tree: Trees suck up carbon dioxide and make clean air for us to breath. Save 2,000 lbs. of carbon dioxide per year.

Insulate Your Water Heater: Keep your water heater insulated could save 1,000 lbs. of carbon dioxide and $40 per year.

Replace Old Appliances: Inefficient appliances waste energy. Save hundreds of lbs. of carbon dioxide and hundreds of dollars per year.

Weatherize Your Home: Caulk and weather strip your doorways and windows. Save 1,700 lbs. of carbon dioxide and $274 per year.

Use a Push Mower: Use your muscles instead of fossil fuels and get some exercise. Save 80 lbs of carbon dioxide and x $ per year.

Unplug Un-Used Electronics: Even when electronic devices are turned off, they use energy. Save over 1,000 lbs of carbon dioxide and $256 per year.

Put on a Sweater: Instead of turning up the heat in your home, wear more clothes Save 1,000 lbs. of carbon dioxide and $250 per year.

Insulate Your Home: Make sure your walls and ceilings are insulated. Save 2,000 lbs. of carbon dioxide and $245 per year.

Air Dry Your Clothes: Line-dry your clothes in the spring and summer instead of using the dryer. Save 700 lbs. of carbon dioxide and $75 per year.

Switch to a Tankless Water Heater: Your water will be heated as you use it rather than keeping a tank of hot water. Save x lbs. of carbon dioxide and $390 per year.

Switch to Double Pane Windows: Double pane windows keep more heat inside your home so you use less energy. Save 10,000 lbs. of carbon dioxide and $436 per year.

Buy Organic Food: The chemicals used in modern agriculture pollute the water supply, and require energy to produce.

Bring Cloth Bags to the Market: Using your own cloth bag instead of plastic or paper bags reduces waste and requires no additional energy.

Use the Canvas/Vinyl Bags Sold at the Market: At Hannaford, each bag costs $5.50; you get a $.05 credit each time you use them and they hold 3 plastic bags worth of groceries. It’s environmentally friendly and it’s easier to get all the groceries into the house!

Source : http://www.stopglobalwarming.org

Future About Global Warming

Is the climate becoming more variable or extreme?

Examination of changes in climate extremes requires long-term daily or even hourly data sets which until recently have been scarce for many parts of the globe. However these data sets have become more widely available allowing research into changes in temperature and precipitation extremes on global and regional scales. Global changes in temperature extremes include decreases in the number of unusually cold days and nights and increases in the number of unusually warm days and nights. Other observed changes include lengthening of the growing season, and decreases in the number of frost days.

Global temperature extremes have been found to exhibit no significant trend in interannual variability, but several studies suggest a significant decrease in intra-annual variability. There has been a clear trend to fewer extremely low minimum temperatures in several widely-separated areas in recent decades. Widespread significant changes in extreme high temperature events have not been observed. There is some indication of a decrease in day-to-day temperature variability in recent decades.

In areas where a drought or excessive wetness usually accompanies an El Niño or La Niña, these dry or wet spells have been more intense in recent years. Further, there is some evidence for increasing drought worldwide, however in the U.S. there is no evidence for increasing drought.In some areas where overall precipitation has increased (ie. the mid-high northern latitudes), there is evidence of increases in the heavy and extreme precipitation events. Even in areas such as eastern Asia, it has been found that extreme precipitation events have increased despite total precipitation remaining constant or even decreasing somewhat. This is related to a decrease in the frequency of precipitation in this region.

Many individual studies of various regions show that extra-tropical cyclone activity seems to have generally increased over the last half of the 20th century in the northern hemisphere, but decreased in the southern hemisphere. Furthermore, hurricane activity in the Atlantic has shown an increase in number since 1970 with a peak in 2005. It is not clear whether these trends are multi-decadal fluctuations or part of a longer-term trend.


How important are these changes in a longer-term context?

Paleoclimatic data are critical for enabling us to extend our knowledge of climatic variability beyond what is measured by modern instruments. Many natural phenomena are climate dependent (such as the growth rate of a tree for example), and as such, provide natural 'archives' of climate information. Some useful paleoclimate data can be found in sources as diverse as tree rings, ice cores, corals, lake sediments (including fossil insects and pollen data), speleothems (stalactites etc), and ocean sediments. Some of these, including ice cores and tree rings provide us also with a chronology due to the nature of how they are formed, and so high resolution climate reconstruction is possible in these cases. However, there is not a comprehensive 'network' of paleoclimate data as there is with instrumental coverage, so global climate reconstructions are often difficult to obtain. Nevertheless, combining different types of paleoclimate records enables us to gain a near-global picture of climate changes in the distant past.

For Northern Hemisphere temperature, recent decades appear to be the warmest since at least about 1000AD, and the warming since the late 19th century is unprecedented over the last 1000 years. Older data are insufficient to provide reliable hemispheric temperature estimates. Ice core data suggest that the 20th century has been warm in many parts of the globe, but also that the significance of the warming varies geographically, when viewed in the context of climate variations of the last millennium.

Large and rapid climatic changes affecting the atmospheric and oceanic circulation and temperature, and the hydrological cycle, occurred during the last ice age and during the transition towards the present Holocene period (which began about 10,000 years ago). Based on the incomplete evidence available, the projected change of 3 to 7°F (1.5 - 4°C) over the next century would be unprecedented in comparison with the best available records from the last several thousand years.

Is sea level rising?

Global mean sea level has been rising at an average rate of 1.7 mm/year (plus or minus 0.5mm) over the past 100 years, which is significantly larger than the rate averaged over the last several thousand years. Depending on which greenhouse gas increase scenario is used (high or low) projected sea-level rise is projected to be anywhere from 0.18 (low greenhouse gas increase) to 0.59 meters for the highest greenhouse gas increase scenario. However, this increase is due mainly to thermal expansion and contributions from melting alpine glaciers, and does not include any potential contributions from melting ice sheets in Greenland or Antarctica. Larger increases cannot be excluded but our current understanding of ice sheet dynamics renders uncertainties too large to be able to assess the likelihood of large-scale melting of these ice sheets.

Can the observed changes be explained by natural variability, including changes in solar output?

Since our entire climate system is fundamentally driven by energy from the sun, it stands to reason that if the sun's energy output were to change, then so would the climate. Since the advent of space-borne measurements in the late 1970s, solar output has indeed been shown to vary. With now 28 years of reliable satellite observations there is confirmation of earlier suggestions of an 11 (and 22) year cycle of irradiance related to sunspots but no longer term trend in these data. Based on paleoclimatic (proxy) reconstructions of solar irradiance there is suggestion of a trend of about +0.12 W/m2 since 1750 which is about half of the estimate given in the last IPCC report in 2001. There is though, a great deal of uncertainty in estimates of solar irradiance beyond what can be measured by satellites, and still the contribution of direct solar irradiance forcing is small compared to the greenhouse gas component. However, our understanding of the indirect effects of changes in solar output and feedbacks in the climate system is minimal. There is much need to refine our understanding of key natural forcing mechanisms of the climate, including solar irradiance changes, in order to reduce uncertainty in our projections of future climate change.

In addition to changes in energy from the sun itself, the Earth's position and orientation relative to the sun (our orbit) also varies slightly, thereby bringing us closer and further away from the sun in predictable cycles (called Milankovitch cycles). Variations in these cycles are believed to be the cause of Earth's ice-ages (glacials). Particularly important for the development of glacials is the radiation receipt at high northern latitudes. Diminishing radiation at these latitudes during the summer months would have enabled winter snow and ice cover to persist throughout the year, eventually leading to a permanent snow- or icepack. While Milankovitch cycles have tremendous value as a theory to explain ice-ages and long-term changes in the climate, they are unlikely to have very much impact on the decade-century timescale. Over several centuries, it may be possible to observe the effect of these orbital parameters, however for the prediction of climate change in the 21st century, these changes will be far less important than radiative forcing from greenhouse gases.

What about the future?

Due to the enormous complexity of the atmosphere, the most useful tools for gauging future changes are 'climate models'. These are computer-based mathematical models which simulate, in three dimensions, the climate's behavior, its components and their interactions. Climate models are constantly improving based on both our understanding and the increase in computer power, though by definition, a computer model is a simplification and simulation of reality, meaning that it is an approximation of the climate system. The first step in any modeled projection of climate change is to first simulate the present climate and compare it to observations. If the model is considered to do a good job at representing modern climate, then certain parameters can be changed, such as the concentration of greenhouse gases, which helps us understand how the climate would change in response. Projections of future climate change therefore depend on how well the computer climate model simulates the climate and on our understanding of how forcing functions will change in the future.

The IPCC Special Report on Emission Scenarios determines the range of future possible greenhouse gas concentrations (and other forcings) based on considerations such as population growth, economic growth, energy efficiency and a host of other factors. This leads a wide range of possible forcing scenarios, and consequently a wide range of possible future climates.

According to the range of possible forcing scenarios, and taking into account uncertainty in climate model performance, the IPCC projects a best estimate of global temperature increase of 1.8 - 4.0°C with a possible range of 1.1 - 6.4°C by 2100, depending on which emissions scenario is used. However, this global average will integrate widely varying regional responses, such as the likelihood that land areas will warm much faster than ocean temperatures, particularly those land areas in northern high latitudes (and mostly in the cold season). Additionally, it is very likely that heat waves and other hot extremes will increase.

Source datasheet: http://lwf.ncdc.noaa.gov/oa/climate/globalwarming.html



Is the hydrological cycle (evaporation and precipitation) changing?

Globally-averaged land-based precipitation shows a statistically insignificant upward trend with most of the increase occurring in the first half of the 20th century. Further, precipitation changes have been spatially variable over the last century. On a regional basis increases in annual precipitation have occurred in the higher latitudes of the Northern Hemisphere and southern South America and northern Australia. Decreases have occurred in the tropical region of Africa, and southern Asia. Due to the difficulty in measuring precipitation, it has been important to constrain these observations by analyzing other related variables. The measured changes in precipitation are consistent with observed changes in stream flow, lake levels, and soil moisture (where data are available and have been analyzed).
Northern Hemisphere snow cover extent has consistently remained below average since 1987, and has decreased by about 10% since 1966. This is mostly due to a decrease in spring and summer snow extent over both the Eurasian and North American continents since the mid-1980s. Winter and autumn snow cover extent have shown no significant trend for the northern hemisphere over the same period.

Clouds are also an important indicator of climate change. Surface-based observations of cloud cover suggest increases in total cloud cover over many continental regions. This increase since 1950 is consistent with regional increases in precipitation for the same period. However, global analyses of cloud cover over land for the 1976-2003 period show little change.

Is the atmospheric/oceanic circulation changing?

A rather abrupt change in the El Niño - Southern Oscillation behavior occurred around 1976/77. Often called the climatic shift of 1976/77, this new regime has persisted. There have been relatively more frequent and persistent El Niño episodes rather than the cool episode La Niñas. This behavior is highly unusual in the last 130 years (the period of instrumental record). Changes in precipitation over the tropical Pacific are related to this change in the El Niño - Southern Oscillation, which has also affected the pattern and magnitude of surface temperatures. However, it is unclear as to whether this apparent change in the ENSO cycle is related to global warming.

Is the hydrological cycle (evaporation and precipitation) changing?

Globally-averaged land-based precipitation shows a statistically insignificant upward trend with most of the increase occurring in the first half of the 20th century. Further, precipitation changes have been spatially variable over the last century. On a regional basis increases in annual precipitation have occurred in the higher latitudes of the Northern Hemisphere and southern South America and northern Australia. Decreases have occurred in the tropical region of Africa, and southern Asia. Due to the difficulty in measuring precipitation, it has been important to constrain these observations by analyzing other related variables. The measured changes in precipitation are consistent with observed changes in stream flow, lake levels, and soil moisture (where data are available and have been analyzed).
Northern Hemisphere snow cover extent has consistently remained below average since 1987, and has decreased by about 10% since 1966. This is mostly due to a decrease in spring and summer snow extent over both the Eurasian and North American continents since the mid-1980s. Winter and autumn snow cover extent have shown no significant trend for the northern hemisphere over the same period.

Clouds are also an important indicator of climate change. Surface-based observations of cloud cover suggest increases in total cloud cover over many continental regions. This increase since 1950 is consistent with regional increases in precipitation for the same period. However, global analyses of cloud cover over land for the 1976-2003 period show little change.

Is the atmospheric/oceanic circulation changing?

A rather abrupt change in the El Niño - Southern Oscillation behavior occurred around 1976/77. Often called the climatic shift of 1976/77, this new regime has persisted. There have been relatively more frequent and persistent El Niño episodes rather than the cool episode La Niñas. This behavior is highly unusual in the last 130 years (the period of instrumental record). Changes in precipitation over the tropical Pacific are related to this change in the El Niño - Southern Oscillation, which has also affected the pattern and magnitude of surface temperatures. However, it is unclear as to whether this apparent change in the ENSO cycle is related to global warming.

3. Is the climate warming?

Global surface temperatures have increased about 0.74°C (plus or minus 0.18°C) since the late-19th century, and the linear trend for the past 50 years of 0.13°C (plus or minus 0.03°C) per decade is nearly twice that for the past 100 years. The warming has not been globally uniform. Some areas (including parts of the southeastern U.S. and parts of the North Atlantic) have, in fact, cooled slightly over the last century. The recent warmth has been greatest over North America and Eurasia between 40 and 70°N. Lastly, seven of the eight warmest years on record have occurred since 2001 and the 10 warmest years have all occurred since 1995.
Recent analyses of temperature trends in the lower and mid- troposphere (between about 2,500 and 26,000 ft.) using both satellite and radiosonde (weather balloon) data show warming rates that are similar to those observed for surface air temperatures. These warming rates are consistent with their uncertainties and these analyses reconcile a discrepancy between warming rates noted on the IPCC Third Assessment Report (U.S. Climate Change Science Plan Synthesis and Assessment Report 1.1).

An enhanced greenhouse effect is expected to cause cooling in higher parts of the atmosphere because the increased "blanketing" effect in the lower atmosphere holds in more heat, allowing less to reach the upper atmosphere. Cooling of the lower stratosphere (about 49,000-79,500 ft.) since 1979 is shown by both satellite Microwave Sounding Unit and radiosonde data (see previous figure), but is larger in the radiosonde data likely due to uncorrected errors in the radiosonde data.

Relatively cool surface and tropospheric temperatures, and a relatively warmer lower stratosphere, were observed in 1992 and 1993, following the 1991 eruption of Mt. Pinatubo. The warming reappeared in 1994. A dramatic global warming, at least partly associated with the record El Niño, took place in 1998. This warming episode is reflected from the surface to the top of the troposphere.

There has been a general, but not global, tendency toward reduced diurnal temperature range (DTR: the difference between daily high or maximum and daily low or minimum temperatures) over about 70% of the global land mass since the middle of the 20th century. However, for the period 1979-2005 the DTR shows no trend since the trend in both maximum and minimum temperatures for the same period are virtually identical; both showing a strong warming signal. A variety of factors likely contribute to this change in DTR, particularly on a regional and local basis, including changes in cloud cover, atmospheric water vapor, land use and urban effects.

ndirect indicators of warming such as borehole temperatures, snow cover, and glacier recession data, are in substantial agreement with the more direct indicators of recent warmth. Evidence such as changes in glacial mass balance (the amount of snow and ice contained in a glacier) is useful since it not only provides qualitative support for existing meteorological data, but glaciers often exist in places too remote to support meteorological stations. The records of glacial advance and retreat often extend back further than weather station records, and glaciers are usually at much higher altitudes than weather stations, allowing scientists more insight into temperature changes higher in the atmosphere.
Large-scale measurements of sea-ice have only been possible since the satellite era, but through looking at a number of different satellite estimates, it has been determined that September Arctic sea ice has decreased between 1973 and 2007 at a rate of about -10% +/- 0.3% per decade. Sea ice extent for September for 2007 was by far the lowest on record at 4.28 million square kilometers, eclipsing the previous record low sea ice extent by 23%. Sea ice in the Antarctic has shown very little trend over the same period, or even a slight increase since 1979. Though extending the Antarctic sea-ice record back in time is more difficult due to the lack of direct observations in this part of the world.

2. Are greenhouse gases increasing?

Human activity has been increasing the concentration of greenhouse gases in the atmosphere (mostly carbon dioxide from combustion of coal, oil, and gas; plus a few other trace gases). There is no scientific debate on this point. Pre-industrial levels of carbon dioxide (prior to the start of the Industrial Revolution) were about 280 parts per million by volume (ppmv), and current levels are greater than 380 ppmv and increasing at a rate of 1.9 ppm yr-1 since 2000. The global concentration of CO2 in our atmosphere today far exceeds the natural range over the last 650,000 years of 180 to 300 ppmv. According to the IPCC Special Report on Emission Scenarios (SRES), by the end of the 21st century, we could expect to see carbon dioxide concentrations of anywhere from 490 to 1260 ppm (75-350% above the pre-industrial concentration).

1. What is the greenhouse effect, and is it affecting our climate?

The greenhouse effect is unquestionably real and helps to regulate the temperature of our planet. It is essential for life on Earth and is one of Earth's natural processes. It is the result of heat absorption by certain gases in the atmosphere (called greenhouse gases because they effectively 'trap' heat in the lower atmosphere) and re-radiation downward of some of that heat. Water vapor is the most abundant greenhouse gas, followed by carbon dioxide and other trace gases. Without a natural greenhouse effect, the temperature of the Earth would be about zero degrees F (-18°C) instead of its present 57°F (14°C). So, the concern is not with the fact that we have a greenhouse effect, but whether human activities are leading to an enhancement of the greenhouse effect by the emission of greenhouse gases through fossil fuel combustion and deforestation.

Introduction of Global Warming

One of the most vigorously debated topics on Earth is the issue of climate change, and the National Environmental Satellite, Data, and Information Service (NESDIS) data centers are central to answering some of the most pressing global change questions that remain unresolved. The National Climatic Data Center contains the instrumental and paleoclimatic records that can precisely define the nature of climatic fluctuations at time scales of a century and longer. Among the diverse kinds of data platforms whose data contribute to NCDC's resources are: Ships, buoys, weather stations, weather balloons, satellites, radar and many climate proxy records such as tree rings and ice cores. The National Oceanographic Data Center contains the subsurface ocean data which reveal the ways that heat is distributed and redistributed over the planet. Knowing how these systems are changing and how they have changed in the past is crucial to understanding how they will change in the future. And, for climate information that extends from hundreds to thousands of years, paleoclimatology data, also available from the National Climatic Data Center, helps to provide longer term perspectives.

Internationally, the Intergovernmental Panel on Climate Change (IPCC), under the auspices of the United Nations (UN), World Meteorological Organization (WMO), and the United Nations Environment Program (UNEP), is the most senior and authoritative body providing scientific advice to global policy makers. The IPCC met in full session in 1990, 1995, 2001 and in 2007. They address issues such as the buildup of greenhouse gases, evidence, attribution, and prediction of climate change, impacts of climate change, and policy options.

Listed below are a number of questions commonly addressed to climate scientists, and brief replies (based on IPCC reports and other research) in common, understandable language. This list will be periodically updated, as new scientific evidence comes to light.

Swallows, geraniums and spruce

In their analysis, Root and her co-workers revealed that nearly 1,200 species -- roughly 81 percent of the total number analyzed -- have undergone biological changes that were "consistent with our understanding of how temperature change influences various traits of a variety of species and populations from around the globe."

Their overall analysis of studies involving temperate-zone species revealed that springtime events -- such as blooming, egg laying and the end of hibernation -- now occur about 5.1 days earlier per decade on average.

The North American tree swallow offers a good example. Field biologists, who kept track of some 21,000 tree swallow nests in the United States and Canada over the last 40 years, concluded that the average egg-laying date for female swallows has advanced by nine days ­ a phenomenon that mirrors other North American studies confirming higher temperatures and the earlier arrival of spring.

Similar long-term observations of flowering plants in Wisconsin revealed that wild geraniums, columbine and other species are blooming earlier than before. Studies in Colorado also showed that marmots are ending their hibernations about three weeks sooner than they were in the late 1970s.

Other studies confirmed that a variety of species -- including butterflies and marine invertebrates -- have shifted their ranges northward as temperatures increased. Measurements taken in Alaska revealed that growth in white spruce trees has been significantly stunted in recent years ­ another expected consequence of a rapidly warming climate, Root said.

"Climate change models predict that the poles will warm more quickly than the equator, so it's not surprising that we're getting the strongest signals of biological change from Alaska and other northern regions," she added.

Proactive response

The authors pointed out that, although plants and animals have responded to climatic changes throughout their evolutionary history, a primary concern for wild species and their ecosystems is the rapid rate of change predicted during the next century.

"The problem will be the differential response of species," Root explained. "I call it the tearing apart of communities. For example, four types of warblers feed on spruce budworm caterpillars. But the birds are shifting north. What happens when the birds no longer are present in the southern portion of their ranges, and the caterpillar population is no longer kept in check?"

She predicted that rapid climate change, coupled with the loss of habitat and other ecological stressors, could lead to the disappearance of species -- a consequence that might be avoided by taking proactive instead of reactive conservation measures.

"For example, there's a very high probability that global warming could contribute to a 50 percent decline in breeding waterfowl populations," Root noted. "One thing we might do now is to consider adjusting the bag limits for hunters so we don't add insult to injury in the coming years. Because anticipation of changes improves our capacity to manage, it behooves us to increase our understanding about the responses of plants and animals to a changing climate."

Other co-authors of the Nature study are Jeff T. Price of the American Bird Conservancy in Colorado; Kimberly R. Hall of Michigan State University; Stephen H. Schneider, a professor of biological sciences at Stanford and an IIS senior fellow; Cynthia Rosenzweig of the NASA Goddard Institute for Space Studies; and Alan Pounds of the Golden Toad Laboratory for Conservation in Costa Rica. The study was supported by the U.S. Environmental Protection Agency, the Winslow Foundation and the University of Michigan.

Climatic and biological changes

In their Nature paper, Root and her colleagues analyzed 143 scientific studies involving a total of 1,473 species of animals and plants. Each study found a direct correlation between global warming and biological change somewhere in the world. For example, several studies revealed that, as temperatures increased in recent decades, certain species began breeding and migrating earlier than expected. Other studies found that the geographical range of numerous species had shifted poleward or moved to a higher elevation -- indicating that some plants and animals are occupying areas that were previously too cold for survival.

Were these biological and behavioral changes isolated events, or did they reflect a worldwide pattern consistent with global warming? After exhaustive statistical analyses of all 143 studies, Root and her co-authors concluded that global warming is, in fact, having a significant impact on animal and plant populations around the world.

"Our study shows that recent temperature change has apparently already had a marked influence on many species," they wrote, noting that a rapid temperature rise in combination with other environmental pressures "could easily disrupt the connectedness among species" and possibly lead to numerous extinctions.

Effects of global warming already being felt on plants and animals worldwide

Global warming is having a significant impact on hundreds of plant and animal species around the world -- although the most dramatic effects may not be felt for decades, according to a new study in the journal Nature.

"Birds are laying eggs earlier than usual, plants are flowering earlier and mammals are breaking hibernation sooner," said Terry L. Root, a senior fellow with Stanford's Institute for International Studies (IIS) and lead author of the Jan. 2 Nature study.

"Clearly, if such ecological changes are now being detected when the globe has warmed by an estimated average of only 1 degree F (0.6 C) over the past 100 years, then many more far-reaching effects on species and ecosystems will probably occur by 2100, when temperatures could increase as much as 11 F (6 C)," Root concluded.

Sabtu, 31 Mei 2008

Grafik Kenaikan Suhu


Global Temperatures from 1860 - 2000

source: http://www.id.wikipedia.org/

An Inconvenient Truth | Film |


An Inconvenient Truth adalah sebuah film pemenang Academy Award dalam kategori film dokumenter tentang perubahan iklimpemanasan global) dan dibawakan oleh mantan Wakil Presiden Amerika Serikat Al Gore dan diarahkan oleh sutradara Davis Guggenheim. Buku pendampingnya yang juga dikarang oleh Al Gore telah menjadi buku terlaris (bestseller) dalam daftar versi New York Times11 Juni 2006, dan menjadi no 1 pada 2 Juli 2006. (khususnya yang diakibatkan sejak

Film ini pertama kali ditayangkan pada Festival Film SundanceNew York dan Los Angeles pada 24 Mei 2006. Film ini menjadi 3 terbesar dalam sejarah untuk kategori pendapatan penghasilan kotor di Amerika Serikat sampai saat ini. Distributor Film, Paramount Classics, menyumbangkan 5% dari penghasilan bonus box office mereka dan Al Gore sendiri menyumbangkan semua bonus yang didapatnya dari film ini kepada The Alliance for Climate Protection (dimana ia menjadi pendiri dan ketuanya). Film ini dirilis dalam bentuk DVD oleh Paramount Home Entertainment pada 21 November 2006. Film ini secara umum diterima dan disambut baik oleh para kritikus film, ilmuwan dan politikus, bahkan telah menjadi bahan wajib untuk ditonton di seluruh sekolah di seluruh penjuru dunia, di antaranya Norwegia dan Swedia.Di lain pihak, para penentang konsep pemanasan global mengatakan bahwa penilitian pemanasan global dalam film ini terlalu heboh dan dibesar-besarkan. 2006 dan setelah itu ditayangkan untuk umum pertama kali di

http://www.id.wikipedia.org/

Menghilangkan karbon

Cara yang paling mudah untuk menghilangkan karbon dioksida di udara adalah dengan memelihara pepohonan dan menanam pohon lebih banyak lagi. Pohon, terutama yang muda dan cepat pertumbuhannya, menyerap karbon dioksida yang sangat banyak, memecahnya melalui fotosintesis, dan menyimpan karbon dalam kayunya. Di seluruh dunia, tingkat perambahan hutan telah mencapai level yang mengkhawatirkan. Di banyak area, tanaman yang tumbuh kembali sedikit sekali karena tanah kehilangan kesuburannya ketika diubah untuk kegunaan yang lain, seperti untuk lahan pertanian atau pembangunan rumah tinggal. Langkah untuk mengatasi hal ini adalah dengan penghutanan kembali yang berperan dalam mengurangi semakin bertambahnya gas rumah kaca.

Gas karbon dioksida juga dapat dihilangkan secara langsung. Caranya dengan menyuntikkan (menginjeksikan) gas tersebut ke sumur-sumur minyak untuk mendorong agar minyak bumi keluar ke permukaan (lihat Enhanced Oil Recovery). Injeksi juga bisa dilakukan untuk mengisolasi gas ini di bawah tanah seperti dalam sumur minyak, lapisan batubara atau aquifer. Hal ini telah dilakukan di salah satu anjungan pengeboran lepas pantai Norwegia, di mana karbon dioksida yang terbawa ke permukaan bersama gas alam ditangkap dan diinjeksikan kembali ke aquifer sehingga tidak dapat kembali ke permukaan.

Salah satu sumber penyumbang karbon dioksida adalah pembakaran bahan bakar fosil. Penggunaan bahan bakar fosil mulai meningkat pesat sejak revolusi industribatubara menjadi sumber energi dominan untuk kemudian digantikan oleh minyak bumi pada pertengahan abad ke-19. Pada abad ke-20, energi gas mulai biasa digunakan di dunia sebagai sumber energi. Perubahan tren penggunaan bahan bakar fosil ini sebenarnya secara tidak langsung telah mengurangi jumlah karbon dioksida yang dilepas ke udara, karena gas melepaskan karbon dioksida lebih sedikit bila dibandingkan dengan minyak apalagi bila dibandingkan dengan batubara. Walaupun demikian, penggunaan energi terbaharui dan energi nuklir lebih mengurangi pelepasan karbon dioksida ke udara. Energi nuklir, walaupun kontroversial karena alasan keselamatan dan limbahnya yang berbahaya, bahkan tidak melepas karbon dioksida sama sekali pada abad ke-18. Pada saat itu, batubara menjadi sumber energi dominan untuk kemudian digantikan oleh minyak bumi pada pertengahan abad ke-19. Pada abad ke-20, energi gas mulai biasa digunakan di dunia sebagai sumber energi. Perubahan tren penggunaan bahan bakar fosil ini sebenarnya secara tidak langsung telah mengurangi jumlah karbon dioksida yang dilepas ke udara, karena gas melepaskan karbon dioksida lebih sedikit bila dibandingkan dengan minyak apalagi bila dibandingkan dengan batubara. Walaupun demikian, penggunaan energi terbaharui dan energi nuklir lebih mengurangi pelepasan karbon dioksida ke udara. Energi nuklir, walaupun kontroversial karena alasan keselamatan dan limbahnya yang berbahaya, bahkan tidak melepas karbon dioksida sama sekali.

source: http://www.id.wikipedia.org

Model iklim

Para ilmuan telah mempelajari pemanasan global berdasarkan model-model computer berdasarkan prinsip-prinsip dasar dinamikan fluida, transfer radiasi, dan proses-proses lainya, dengan beberapa penyederhanaan disebabkan keterbatasan kemampuan komputer. Model-model ini memprediksikan bahwa penambahan gas-gas rumah kaca berefek pada iklim yang lebih hangat.[16] Walaupun digunakan asumsi-asumsi yang sama terhadap konsentrasi gas rumah kaca di masa depan, sensitivitas iklimnya masih akan berada pada suatu rentang tertentu.

Dengan memasukkan unsur-unsur ketidakpastian terhadap konsentrasi gas rumah kaca dan pemodelan iklim, IPCC memperkirakan pemanasan sekitar 1.1 °C hingga 6.4 °C (2.0 °F hingga 11.5 °F) antara tahun 1990 dan 2100.[1] Model-model iklim juga digunakan untuk menyelidiki penyebab-penyebab perubahan iklim yang terjadi saat ini dengan membandingkan perubahan yang teramati dengan hasil prediksi model terhadap berbagai penyebab, baik alami maupun aktivitas manusia.

Model iklim saat ini menghasilkan kemiripan yang cukup baik dengan perubahan temperature global hasil pengamatan selama seratus tahun terakhir, tetapi tidak mensimulasi semua aspek dari iklim.[17] Model-model ini tidak secara pasti menyatakan bahwa pemanasan yang terjadi antara tahun 1910 hingga 1945 disebabkan oleh proses alami atau aktivitas manusia; akan tetapi; mereka menunjukkan bahwa pemanasan sejak tahun 1975 didominasi oleh emisi gas-gas yang dihasilkan manusia.

Sebagian besar model-model iklim, ketika menghitung iklim di masa depan, dilakukan berdasarkan skenario-skenario gas rumah kaca, biasanya dari Laporan Khusus terhadap Skenario Emisi (Special Report on Emissions Scenarios / SRES) IPCC. Yang jarang dilakukan, model menghitung dengan menambahkan simulasi terhadap siklus karbon; yang biasanya menghasilkan umpan balik yang positif, walaupun responnya masih belum pasti (untuk skenario A2 SRES, respon bervariasi antara penambahan 20 dan 200 ppm CO2). Beberapa studi-studi juga menunjukkan beberapa umpan balik positif.[18][19][20]

Pengaruh awan juga merupakan salah satu sumber yang menimbulkan ketidakpastian terhadap model-model yang dihasilkan saat ini, walaupun sekarang telah ada kemajuan dalam menyelesaikan masalah ini. [21] Saat ini juga terjadi diskusi-diskusi yang masih berlanjut mengenai apakah model-model iklim mengesampingkan efek-efek umpan balik dan tak langsung dari variasi Matahari.

source: >variasi matahari
>mengukur pemanasan global
> model iklim

http://id.wikipedia.org/wiki/Global_warming

Variasi Matahari

Terdapat hipotesa yang menyatakan bahwa variasi dari Matahari, dengan kemungkinan diperkuat oleh umpan balik dari awan, dapat memberi kontribusi dalam pemanasan saat ini. Stratosfer sebaliknya efek rumah kaca akan mendinginkan stratosfer. Pendinginan stratosfer bagian bawah paling tidak telah diamati sejak tahun 1960,yang tidak akan terjadi bila aktivitas Matahari menjadi kontributor utama pemanasan saat ini. (Penipisan lapisan ozon juga dapat memberikan efek pendinginan tersebut tetapi penipisan tersebut terjadi mulai akhir tahun 1970-an.) Fenomena variasi Matahari dikombinasikan dengan aktivitas gunung berapi mungkin telah memberikan efek pemanasan dari masa pra-industri hingga tahun 1950, serta efek pendinginan sejak tahun 1950. Perbedaan antara mekanisme ini dengan pemanasan akibat efek rumah kaca adalah meningkatnya aktivitas Matahari akan memanaskan

Ada beberapa hasil penelitian yang menyatakan bahwa kontribusi Matahari mungkin telah diabaikan dalam pemanasan global. Dua ilmuan dari Duke University mengestimasikan bahwa Matahari mungkin telah berkontribusi terhadap 45-50% peningkatan temperatur rata-rata global selama periode 1900-2000, dan sekitar 25-35% antara tahun 1980 dan 2000. Stott dan rekannya mengemukakan bahwa model iklim yang dijadikan pedoman saat ini membuat estimasi berlebihan terhadap efek gas-gas rumah kaca dibandingkan dengan pengaruh Matahari; mereka juga mengemukakan bahwa efek pendinginan dari debu vulkanik dan aerosol sulfat juga telah dipandang remeh.Walaupun demikian, mereka menyimpulkan bahwa bahkan dengan meningkatkan sensitivitas iklim terhadap pengaruh Matahari sekalipun, sebagian besar pemanasan yang terjadi pada dekade-dekade terakhir ini disebabkan oleh gas-gas rumah kaca.

Pada tahun 2006, sebuah tim ilmuan dari Amerika Serikat, Jerman dan Swiss menyatakan bahwa mereka tidak menemukan adanya peningkatan tingkat "keterangan" dari Matahari pada seribu tahun terakhir ini. Siklus Matahari hanya memberi peningkatan kecil sekitar 0,07% dalam tingkat "keterangannya" selama 30 tahun terakhir. Efek ini terlalu kecil untuk berkontribusi terhadap pemansan global.[13][14] Sebuah penelitian oleh Lockwood dan Fröhlich menemukan bahwa tidak ada hubungan antara pemanasan global dengan variasi Matahari sejak tahun 1985, baik melalui variasi dari output Matahari maupun variasi dalam sinar kosmis.

Efek Umpan Balik

Efek-efek dari agen penyebab pemanasan global juga dipengaruhi oleh berbagai proses umpan balik yang dihasilkannya. Sebagai contoh adalah pada penguapan air. Pada kasus pemanasan akibat bertambahnya gas-gas rumah kaca seperti CO2, pemanasan pada awalnya akan menyebabkan lebih banyaknya air yang menguap ke atmosfer. Karena uap air sendiri merupakan gas rumah kaca, pemanasan akan terus berlanjut dan menambah jumlah uap air di udara hingga tercapainya suatu kesetimbangan konsentrasi uap air. Efek rumah kaca yang dihasilkannya lebih besar bila dibandingkan oleh akibat gas CO2 sendiri. (Walaupun umpan balik ini meningkatkan kandungan air absolut di udara, kelembaban relatif udara hampir konstan atau bahkan agak menurun karena udara menjadi menghangat). Umpan balik ini hanya dapat dibalikkan secara perlahan-lahan karena CO2 memiliki usia yang panjang di atmosfer.

Efek-efek umpan balik karena pengaruh awan sedang menjadi objek penelitian saat ini. Bila dilihat dari bawah, awan akan memantulkan radiasi infra merah balik ke permukaan, sehingga akan meningkatkan efek pemanasan. Sebaliknya bila dilihat dari atas, awan tersebut akan memantulkan sinar Matahari dan radiasi infra merah ke angkasa, sehingga meningkatkan efek pendinginan. Apakah efek netto-nya pemanasan atau pendinginan tergantung pada beberapa detail-detail tertentu seperti tipe dan ketinggian awan tersebut. Detail-detail ini sulit direpresentasikan dalam model iklim, antara lain karena awan sangat kecil bila dibandingkan dengan jarak antara batas-batas komputasional dalam model iklim (sekitar 125 hingga 500 km untuk model yang digunakan dalam Laporan Pandangan IPCC ke Empat). Walaupun demikian, umpan balik awan berada pada peringkat dua bila dibandingkan dengan umpan balik uap air dan dianggap positif (menambah pemanasan) dalam semua model yang digunakan dalam Laporan Pandangan IPCC ke Empat.

Umpan balik penting lainnya adalah hilangnya kemampuan memantulkan cahaya (albedo) oleh es. Ketika temperatur global meningkat, es yang berada di dekat kutub mencair dengan kecepatan yang terus meningkat. Bersama dengan melelehnya es tersebut, daratan atau air dibawahnya akan terbuka. Baik daratan maupun air memiliki kemampuan memantulkan cahaya lebih sedikit bila dibandingkan dengan es, dan akibatnya akan menyerap lebih banyak radiasi Matahari. Hal ini akan menambah pemanasan dan menimbulkan lebih banyak lagi es yang mencair, menjadi suatu siklus yang berkelanjutan.

Umpan balik positif akibat terlepasnya CO2 dan CH4 dari melunaknya tanah beku (permafrost) adalah mekanisme lainnya yang berkontribusi terhadap pemanasan. Selain itu, es yang meleleh juga akan melepas CH4 yang juga menimbulkan umpan balik positif.

Kemampuan lautan untuk menyerap karbon juga akan berkurang bila ia menghangat, hal ini diakibatkan oleh menurunya tingkat nutrien pada zona mesopelagic sehingga membatasi pertumbuhan diatom daripada fitoplankton yang merupakan penyerap karbon yang rendah.

Efek rumah kaca

Segala sumber energi yang terdapat di Bumi berasal dari Matahari. Sebagian besar energi tersebut dalam bentuk radiasi gelombang pendek, termasuk cahaya tampak. Ketika energi ini mengenai permukaan Bumi, ia berubah dari cahaya menjadi panas yang menghangatkan Bumi. Permukaan Bumi, akan menyerap sebagian panas dan memantulkan kembali sisanya. Sebagian dari panas ini sebagai radiasi infra merah gelombang panjang ke angkasa luar. Namun sebagian panas tetap terperangkap di atmosfer bumi akibat menumpuknya jumlah gas rumah kaca antara lain uap air, karbon dioksida, dan metana yang menjadi perangkap gelombang radiasi ini. Gas-gas ini menyerap dan memantulkan kembali radiasi gelombang yang dipancarkan Bumi dan akibatnya panas tersebut akan tersimpan di permukaan Bumi. Hal tersebut terjadi berulang-ulang dan mengakibatkan suhu rata-rata tahunan bumi terus meningkat.

Gas-gas tersebut berfungsi sebagaimana kaca dalam rumah kaca. Dengan semakin meningkatnya konsentrasi gas-gas ini di atmosfer, semakin banyak panas yang terperangkap di bawahnya.

Sebenarnya, efek rumah kaca ini sangat dibutuhkan oleh segala makhluk hidup yang ada di bumi, karena tanpanya, planet ini akan menjadi sangat dingin. Dengan temperatur rata-rata sebesar 15 °C (59 °F), bumi sebenarnya telah lebih panas 33 °C (59 °F) dengan efek rumah kaca[3] (tanpanya suhu bumi hanya -18 °C sehingga es akan menutupi seluruh permukaan Bumi). Akan tetapi sebaliknya, akibat jumlah gas-gas tersebut telah berlebih di atmosfer, pemanasan global menjadi akibatnya.

source: http://id.wikipedia.org/wiki/Global_warming

Minggu, 18 Mei 2008

Pencegahan Global Warming

1. Menjadikan Bahan Makanan sebagai Bahan Bakar. Dengan bahsa gampangnya konversi bahan bakar dengan biofuel. Seperti yang pernah saya baca di majalah apa gitu saat ini jagung dapat digunakan untuk menghasilkan biofuel (setiap bahan bakar baik padatan, cairan ataupun gas yang dihasilkan dari bahan-bahan organic, src : wikipedia). Hal ini dikembangkan dinegara yang jauh disana, apalagi ada pendapat terbaru yang menyatakan bahwa sekam dari jagung jauh lebih baik untuk menghasilkan biofuel. Biofuel ini di Indonseia mulai dikembangkan dari Ubi.

2. Get Blueprints For a Green House. Jadi ada aturan buat green house yang bener itu gimana sehingga fungsi-fungsi lingkungan bisa tetap terjaga. Mungkin seperti itu.

3. Change Your Lightbulbs hal ini menyebabkan perpendaran cahaya yang memungkinkan pemborosan terhadap energi listrik yang digunakan. Aku ga’ begitu ngerti sama poin ini.

4. Gunakan Lampu yang lebih ramah lingkungan untuk penerangan jalan, tempat-tempat umum, bahkan sampai ke rumah-rumah, misalnya menggunakan lampu LED.

Ga’ nyangka kalo lampu LED bisa membantu mencegah Global warming, padahal katanya ibuku kalo belajar itu bagusan pake’ lampu yang balon itu, yang nyalanya warna kuning. Cos kalo lampu yang warna putih itu getarannya ato apanya ya… lebih cepet, jadinya kedip2 gt yang bikin ga’ bagus buat mata! Ini sih Cuma pengalaman pribadi yang ga’ tahu dasarnya apakah salah atau bener, dan penjelasan ilmiahnya juga males nyari.

5. Memberlakukan pajak untuk pengeluaran Karbon.
Skenario yang dapat dilakukan diantaranya adalah membatasi emisi gas karbon yang dikeluarkan oleh setiap industri. Jika sebuah Industri mengeluarkan gas karbon kurang dari standar yang ditetapkan maka industri tersebut dapat menjual sisa karbon yang menjadi haknya. Sedangkan jika Industri yang mengeluarkan gas karbon melebihi batas yang ditentukan maka industri tersebut harus membayar ke pasar berapa kelebihan gas karbon yang dikeluarkan ke pasar. Hal ini akan memicu persaingan untuk menekan emisi karbon ke udara.
6. Hilangkan Rumah Besar.
Dapat diusahakan untuk membangun rumah dengan ukuran yang lebih kecil. Karena rumah yang besar akan memerlukan asupan energi yang lebih banyak untuk mendinginkan atau menghangatkan ruangan.

Jumat, 16 Mei 2008

Mendukung Pengurangan Global Warming

Hukum dan Kebijakan yang Mendukung

Para pembuat keputusan dapat mendorong efisiensi energi dan upaya pengurangan emisi CO2 lainnya, baik dalam bentuk persediaan maupun penggunaan energi. Efisiensi dapat dilaksanakan di banyak bidang dengan menyediakan kerangka regulasi dan ekonomi yang tepat untuk konsumen dan investor. Kerangka ini harus mempromosikan upaya dengan biaya yang efektif, teknologi terbaik untuk saat ini dan masa depan, dan solusi yang membuat lingkungan dan perekonomian siap untuk menghadapi ancaman perubahan iklim.

Menjadikan Protokol Kyoto sebagai hukum internasional merupakan langkah pertama yang paling penting dalam menghadapi masalah perubahan iklim. Protokol ini adalah satu-satunya persetujuan global untuk membatasi polusi pemanasan global. Ini juga adalah dasar dari aktifitas global yang efektif dalam mengatasi perubahan iklim di waktu yang akan datang.

Protokol Kyoto termasuk di dalam Kerangka Kerja Konvensi PBB mengenai Perubahan Iklim (UNFCCC). Protokol ini mewajibkan negara-negara industri (Annex-1) - terkecuali Amerika Serikat yang tidak berpartisipasi - untuk mengurasi emisi gas rumah kaca sebesar rata-rata 5 persen dibawah level di tahun 1990 pada tahun 2008-2012.

Saat ini, dengan makin banyaknya bukti-bukti dari bahaya akibat perubahan iklim, negosiasi yang terjadi di antara negara-negara anggota UNFCCC mengenai seberapa besar pengurangan emisi CO2 tidak hanya akan mengakomodasi negara-negara Annex 1, namun juga kemungkinan adanya komitmen bagi negara-negara berkembang (Non Annex-1) pada periode komitmen kedua (setelah tahun 2012).

Sangat besar kemungkinan bagi Indonesia sebagai salah satu negara penghasil bahan bakar fosil terbesar untuk mendapatkan komitmen dalam target pengurangan emisi pada periode komitmen kedua. Terkait dengan hal tersebut, sangat perlu bagi Indonesia untuk mengambil langkah nyata dan berperan secara aktif dalam mempersiapkan komitmen secara domestik maupun internasional di masa yang akan datang.

Saat ini amatlah penting untuk melakukan upaya untuk membangun kepercayaan dan pemahaman yang lebih baik diantara berbagai pihak berbeda yang terkait dalam penelitian, pengambilan keputusan politis dan perumusan kebijakan di isu iklim, yang pada akhirnya akan memfasilitasi strategi negosiasi iklim di masa yang akan datang.

Sekilas Tentang Protokol Kyoto

Segera setelah Konvensi Kerangka Kerjasama Persatuan Bangsa-bangsa mengenai Perubahan Iklim (UNFCCC-United Nations Framework Convention on Climate Change) disetujui pada KTT Bumi (Earth Summit) tahun 1992 di Rio de Janeiro, Brazil, negara-negara peserta konvensi mulai melakukan negosiasi-negosiasi untuk membentuk suatu aturan yang lebih detil dalam mengurangi emisi gas rumah kaca (selanjutnya disebut GRK).

Pada saat pertemuan otoritas tertinggi tahunan dalam UNFCCC ke-3 (Conference of Parties 3 - COP) diadakan di Kyoto, Jepang, sebuah perangkat peraturan yang bernama Protokol Kyoto diadopsi sebagai pendekatan untuk mengurangi emisi GRK. Kepentingan protokol tersebut adalah mengatur pengurangan emisi GRK dari semua negara-negara yang meratifikasi. Protokol Kyoto ditetapkan tanggal 12 Desember 1997, kurang lebih 3 tahun setelah Konvensi Perubahan Iklim mulai menegosiasikan bagaimana negara-negara peratifikasi konvensi harus mulai menurunkan emisi GRK mereka.

Menurut pengertiannya secara umum (http://untreaty.un.org/), protokol adalah seperangkat aturan yang mengatur peserta protokol untuk mencapai tujuan tertentu yang telah disepakati. Dalam sebuah protokol, para anggota jelas terikat secara normatif untuk mengikuti aturan-aturan di dalamnya dan biasanya dibentuk untuk mempertegas sebuah peraturan sebelumnya (misalnya konvensi) menjadi lebih detil dan spesifik.

Sepanjang COP 1 dan COP 2 hampir tidak ada kesepakatan yang berarti dalam upaya penurunan emisi GRK. COP 3 dapat dipastikan adalah ajang perjuangan negosiasi antara negara-negara ANNEX I yang lebih dulu mengemisikan GRK sejak revolusi industri dengan negara-negara berkembang yang rentan terhadap perubahan iklim. Negara-negara maju memiliki kepentingan bahwa pembangunan di negara mereka tidak dapat lepas dari konsumsi energi dari sektor kelistrikan, transportasi, dan industri. Untuk mengakomodasikan kepentingan antara kedua pihak tersebut Protokol Kyoto adalah satu-satunya kesepakatan internasional untuk berkomitmen dalam mengurangi emisi GRK yang mengatur soal pengurangan emisi tersebut dengan lebih tegas dan terikat secara hukum (legally binding).

Dalam Protokol Kyoto disepakati bahwa seluruh negara ANNEX I wajib menurunkan emisi GRK mereka rata-rata sebesar 5.2% dari tingkat emisi tersebut di tahun 1990. Tahun 1990 ditetapkan dalam Protokol Kyoto sebagai acuan dasar (baseline) untuk menghitung tingkat emisi GRK. Bagi negara NON ANNEX I Protokol Kyoto tidak mewajibkan penurunan emisi GRK, tetapi mekanisme partisipasi untuk penurunan emisi tersebut terdapat di dalamnya, prinsip tersebut dikenal dengan istilah "tanggung jawab bersama dengan porsi yang berbeda" (common but differentiated responsbility). Protokol Kyoto mengatur semua ketentuan tersebut selama periode komitmen pertama yaitu dari tahun 2008 sampai dengan 2012.

Beberapa mekanisme dalam Protokol Kyoto yang mengatur masalah pengurangan emisi GRK, seperti dijelaskan di bawah ini:

  • 1. Joint Implementation (JI), mekanisme yang memungkinkan negara-negara maju untuk membangun proyek bersama yang dapat menghasilkan kredit penurunan atau penyerapan emisi GRK.

  • 2. Emission Trading (ET), mekanisme yang memungkinkan sebuah negara maju untuk menjual kredit penurunan emisi GRK kepada negara maju lainnya. ET dapat dimungkinkan ketika negara maju yang menjual kredit penurunan emisi GRK memiliki kredit penurunan emisi GRK melebihi target negaranya.

  • 3. Clean Development Mechanism (CDM), mekanisme yang memungkinkan negara non-ANNEX I (negara-negara berkembang) untuk berperan aktif membantu penurunan emisi GRK melalui proyek yang diimplementasikan oleh sebuah negara maju. Nantinya kredit penurunan emisi GRK yang dihasilkan dari proyek tersebut dapat dimiliki oleh negara maju tersebut. CDM juga bertujuan agar negara berkembang dapat mendukung pembangunan berkelanjutan, selain itu CDM adalah satu-satunya mekanisme di mana negara berkembang dapat berpartisipasi dalam Protokol Kyoto.

Bagi negara-negara ANNEX I mekanisme-mekanisme di atas adalah perwujudan dari prinsip mekanisme fleksibel (flexibility mechanism). Mekanisme fleksibel memungkinkan negara-negara ANNEX I mencapai target penurunan emisi mereka dengan 3 mekanisme tersebut di atas.

Ada dua syarat utama agar Protokol Kyoto berkekuatan hukum, yang pertama adalah sekurang-kurangnya protokol harus diratifikasi oleh 55 negara peratifikasi Konvensi Perubahan Iklim, dan yang kedua adalah jumlah emisi total dari negara-negara ANNEX I peratifikasi protokol minimal 55% dari total emisi mereka di tahun 1990. Pada tanggal 23 Mei 2002, Islandia menandatangani protokol tersebut yang berarti syarat pertama telah dipenuhi. Kemudian pada tanggal 18 November 2004 Rusia akhirnya meratifikasi Protokol Kyoto dan menandai jumlah emisi total dari negara ANNEX I sebesar 61.79%, ini berarti semua syarat telah dipenuhi dan Protokol Kyoto akhirnya berkekuatan hukum 90 hari setelah ratifikasi Rusia, yaitu pada tanggal 16 Februari 2005.

Melawan Global Warming

Pemanasan global atau yang populer dengan istilah Global Warming (GW) menjadi salah satu isu paling hangat di seluruh dunia belakangan ini. Konferensi Kerangka Kerja Perserikatan Bangsa-Bangsa (PBB) tentang Perubahan Iklim atau UNFCCC yang dilangsungkan di Bali akhir tahun lalu merupakan salah satu bukti keseriusan isu ini. Konferensi yang berlangsung selama hampir dua minggu tersebut berhasil menyepakati Bali Roadmap yang akan mengantarkan Planet Bumi untuk menghadapi dan terutama melawan GW. GW memiliki dampak yang sangat luas. Tentu tidak cukup tempat untuk membahas semuanya dalam tulisan ini, karenanya saya akan memfokuskan pada satu masalah saja. Bagaimana dampak GW terhadap kedaulatan, teruma ketika dikaitkan dengan peningkatan tinggi muka laut yang memengaruhi kondisi pulau-pulau, yurisdiksi wilayah maritim dan batas maritim suatu negara pantai dengan negara tetangganya? Memahami Kepulauan Indonesia dan Batas Maritimnya Indonesia adalah negara kepulauan yang memiliki lebih dari 17 ribu pulau dan berbatasan dengan sepuluh negara tetangga yaitu India, Thailand, Malaysia, Singapura, Vietnam, Filipina, Palau, Papua Nugini, Australia dan Timor Leste. Dengan kesepuluh negara tersebut, Indonesia berbatasan maritim dan sekaligus berbatasan darat dengan tiga diantaranya yaitu Malaysia (di Kalimantan), Papua Nugini dan Timor Leste seperti terlihat pada Gambar 1. Gambar 1 Indonesia dan sepuluh negara tetangga Sebagai negara kepulauan, Indonesia memiliki banyak pulau kecil. Menurut Undang-undang No. 27/2007, ada 92 pulau kecil yang menjadi bagian dari Kepulauan Indonesia. Bagi Indonesia, pulau-pulau kecil, terutama yang berlokasi di pinggir kepulauan (pulau terluar) memiliki nilai strategis. Pada pulau-pulau terluar inilah ditempatkan titik-titik pangkal yang membentuk garis pangkal kepulauan. Garis pangkal ini melingkupi seluruh Kepulauan Indonesia dan merupakan acuan untuk mengukur lebar wilayah maritim Indonesia (lihat Gambar 2), baik itu laut teritorial (12 mil laut dari garis pangkal), zona tambahan (24 mil laut), zona ekonomi eksklusif (200 mil laut) dan landas kontinen (hingga 350 mil laut atau lebih). Garis pangkal ini juga menjadi referensi dalam menentukan garis batas maritim dengan negara tetangga jika terjadi sengketa atau tumpang tindih klaim. Gambar 2 Garis pangkal dan batas terluar zone maritim GW dan Tenggelamnya Pulau-pulau Berbagai pihak telah memublikasikan temuannya terkait meningkatnya suhu Bumi yang menyebabkan meningkatnya tingi muka laut. Data yang dilansir PBB dalam website resmi perubahan iklim menyatakan bahwa selama abad 20, peningkatan suhu global mencapai 0,74‹C. Jika konsentrasi karbon dioksida tetap pada angka 550 ppm (parts per million) maka peningkatan suhu bisa mencapai 2 - 4,5‹C, dengan perkiraan terbaik sebesar 3‹C. Dengan kata lain, jika penurunan emisi karbon dioksida tidak dilakukan dengan sungguh-sungguh maka peningkatan suhu yang drastis tidak bisa dihindarkan. Fenomena lain yang teramati sebagai dampak pemanasan global adalah mencairnya es di kutub. Telah terbukti bahwa tutupan es di Antartika (Kutub Selatan) dan Greenland (Kutub Utara) berkurang massanya akibat pelelehan. Hal ini meningkatkan tinggi muka laut yang mencapai 17 cm selama abad 20. Dengan kondisi yang ada sekarang, dapat diperkirakan bahwa peningkatan tinggi muka laut di akhir abad ke-21 dapat mencapai angka 28-58 cm. Salah satu akibat meningkatnya tinggi muka laut adalah tenggelamnya pulau-pulau kecil atau dataran rendah. Kawasan di Kepulauan Pasifik adalah yang selama ini diduga akan terkena dampak GW paling awal. Kiribati, misalnya, adalah salah satu negara kecil di kawasan Pasifik yang merasakan kekhawatiran tersebut. Presidennya, Anote Tong, mengungkapkan dalam Forum Tahunan Pacific Selatan di Fiji (2006) bahwa dengan tenggelamnya pulau-pulau dalam kurun waktu sepuluh tahun ke depan, merea harus segera mencari tempat untuk mengungsi. Negara di kawasan Pasifik yang juga rawan kena dampak GW adalah Vanuatu, Marshall Islands, Tuvalu, dan sebagian Papua Nugini. Satu desa di Pulau Tegua, Vanuatu, misalnya, dipaksa untuk mengungsi ke tempat yang lebih tinggi akibat banjir karena meningkatnya tinggi gelombang laut. Sebagai konsekuensi terjadinya pengungsian, Australia dan Selandia Baru diperkirakan akan menjadi tujuan pengungsi utama mengingat lokasinya paling dekat dengan negara-negara kecil di kawasan Pasifik. Sementara itu, di Indonesia berkembang berita yang lebih dramatis. Indonesia diperkirakan akan kehilangan 2.000 pulau pada tahun 2030 akibat GW. Kabar ini sesungguhnya tidak bisa dipercaya begiu saja karena beredar lewat media informal dan tidak dikeluarkan oleh institusi resmi. Meski demikian, salah satu pernyatan formal diungkapkan oleh Kepala BMG Yogyakarta, Jaya Murjaya dalam Seminar Nasional Geografi di Universitas Negeri Yogyakarta bulan Mei 2007. Ketika dikonfirmasi secara personal, Murjaya mengungkapkan bahwa pernyataan itu juga dikutip dari berbagai sumber. Dengan kata lain, ini bukan hasil kajian Murjaya maupun BMG. Murjaya juga mengungkapkan prediksi peningkatan tinggi muka laut dapat mencapai 29 cm tahun 2030. Idealnya, kesimpulan tenggelamnya pulau ini harus didukung data yang menyatakan bahwa terdapat 2.000 pulau di Indonesia yang berketinggian kurang dari 29 cm di atas permukaan laut saat pasang tertinggi. Pernyataan ini tentunya memerlukan penelitian dan diskusi lebih lanjut. Meskipun jumlah pulau Indonesia yang akan tenggelam akibat GW tidak bisa diprediksi dengan mudah, kenyataan bahwa tinggi muka laut terus meningkat memang dapat mengakibatkan hilangnya pulau. Hilangnya pulau kecil terluar akan mengubah garis pangkal yang akhirnya memengaruhi status dan luas wilayah maritim Indonesia (lihat Gambar 2). Ini adalah persoalan serius yang merupakan ancaman atas kedaulatan (sovereignty, terkait hilangnya pulau) dan hak berdaulat (sovereign rights, terkait wilayah maritim). Perlu Khawatir atau Tidak? Meskipun segala berita tentang GW terkait peningkatan tinggi muka laut dan hilangnya perlu diperhatikan, kehati-hatian tetap diperlukan untuk menghindari salah pengertian. Salah satu hal yang harus diperhatikan adalah definisi pulau menurut Konvensi PBB tentang Hukum Laut (UNCLOS). Pada pasal 121 UNCLOS, dinyatakan bahwa sebuah pulau harus terbentuk secara alami, dikelilingi oleh air dan berada di atas permukaan laut ketika pasang tertinggi. Syarat terakhir terkait dengan disiplin geodesi. Hal ini mengindikasikan bahwa pulau harus selalu berada di atas permukaan laut, apapun yang terjadi, berapapun tinggi permukaan lautnya. Artinya, dalam mendefinisikan pulau atau sebelum menyatakan pulau hilang, harus ada pemahaman pasang surut laut (pasut) secara seksama. Pemantauan pulau dengan teknologi penginderaan jauh melalui interpretasi citra satelit, misalnya, memiliki risiko yang harus dipahami dengan baik. Salah satu risikonya adalah penggunaan citra yang direkam pada saat air surut terendah. Akibatnya, sangat mungkin ada obyek geografi di tengah laut yang terlihat pada citra satelit seperti pulau, padahal obyek geografi tersebut bisa saja tenggelam ketika air pasang tertinggi. Obyek semacam ini tidak bisa dikatakan pulau. Kurangnya pemahaman akan hal ini dapat mengakibatkan kesalahan dalam mencermati fenomena naiknya tinggi muka laut dan tenggelamnya pulau. Hal lain sehubungan dengan dampak GW adalah batas maritim dengan negara tetangga. Perubahan tinggi muka laut memang dapat mengubah konfigurasi garis pantai yang pada akhirnya mengubah garis pangkal. Perubahan garis pangkal dapat mengakibatkan perubahan klaim maritim tetapi TIDAK akan berpengaruh pada garis batas maritim yang SUDAH ditetapkan dalam traktat (perjanjian). Hal ini sesuai dengan ketentuan Vienna Convention on the Law of Treaties 1969, yang mengecualikan traktat batas [maritim] dalam hal perubahan/pembatalan. Ketentuan lain yang mendukug hal ini adalah Vienna Convention on Succession of States in Respect of Treaties 1978. Di Selat Malaka, misalnya, Indonesia sudah menyepakati batas dasar laut dengan Malaysia. Garis batas ini tidak akan terpengaruh oleh perubahan garis pantai/garis pangkal akibat GW. Meski demikian, perubahan garis pangkal semacam ini tentu saja dapat memengaruhi penentuan garis batas maritim yang belum disepakati, seperti penetapan batas zona ekonomi eksklusif di Selat Malaka. Sederhananya, perubahan garis pangkal dapat berpengaruh pada garis batas yang akan disepakati di masa depan, tetapi tidak berpengaruh pada garis batas yang sudah ada saat ini. Bagaimana Melawan GW? Ada banyak sekali alasan untuk melawan GW, walaupun jelas tidaklah mudah. Dalam konteks negara kepulauan seperti Indonesia, menjaga kedaulatan adalah salah satu alasannya. Pertanyaan selanjutnya, bagaimana melawan GW? Bisakah fenomena global yang menyangkut kehidupan seluruh Planet Bumi ini dipengaruhi atau diperbaiki oleh tindakan individu? Memang harus diakui bahwa perubahan di tingkat penggunaan energi dunia adalah kunci dalam melawan GW. Sayangnya hal ini tidak berada di tangan orang kebanyakan melainkan pada kekuatan sekelompok elit di dunia. Yang bisa saya dan Anda lakukan adalah berbuat hal kecil yang nyata. Saya teringat puisi Taufik Ismail yang pernah dikirimkan seorang kawan. Memang ada kalanya kita tidak bisa menjadi beringin. Setidaknya kita bisa menjadi belukar yang tumbuh di tepi danau atau bahkan rumput, tetapi rumput yang menguatkan tanggul jalan. Meski tidak bisa seperti Andrew Shepherd di film The American President yang dengan lantang mengatakan bahwa Gedung Putih akan mengirim Resolusi 455 kepada Kongres yang mensyaratkan pengurangan 20% emisi minyak fosil dalam 10 tahun, setidaknya saya bisa menolak tas plastik ketika membeli sebuah buku. Tindakan sederhana ini tidak akan serta merta menghentikan GW, tetapi seperti kata Dewi Lestari, dia bisa saja menjadi bola salju yang semakin besar dan memberi pengaruh melebihi yang pernah saya dan Anda bayangkan. Apa yang sudah Anda lakukan untuk melawan GW hari ini? Penulis adalah dosen Teknik Geodesi UGM, pemerhati isu batas maritim, peneliti United Nations bidang ocean affairs and the law of the sea (2007). Tulisan ini adalah pendapat pribadi.

Senin, 12 Mei 2008

Faktor penyebab Global Warming.

Faktor penyebab Global Warming dapat kita jumpai sangat dekat dengan keseharian kita. Mulai dari hal-hal kecil; misalnya AC (air conditioner) dan Lemari Pendingin Makanan atau Freezer. Freon, salah satu bahan yang terdapat di kedua benda tersebut, secara tidak sadar menjadi bahan yang merusak bagi lapisan ozon. Namun sebenarnya yang paling merusak dari kesemua bahan-bahan emisi adalah Karbon. Dalam bahasa inggrisnya carbon emision adalah sebuah bahan yang sangat merusak lapisan ozon layer atau lapisan ozon karena carbon inilah yang paling reaktif mengikat oksigen yang ada di ozon untuk berreaksi.

Dari manakah carbon ini?
Karbon dapat berasal dari mana saja. Karbon monoksida merupakan faktor terbesar yang berpengaruh terhadap hal ini. Karbon monoksida atau secara kimia di sebutkan sebagai CO adalah gas yang dihasilkan dari emisi gas buang kendaraan bermotor. Gas inilah yang menjadi masalah bagi ozon. Karena ozon merupakan lapisan O3 dan CO bereaksi menjadi gas Carbon Dioxida atau
CO + O3 -> CO2 + O2 secara kimiawi
Dengan bereaksinya CO ini dengan ozon mengakibatkan lapisan tersebut menipis-menipis dan akhirnya bolong. Selain itu masih banyak gas-gas lainnya yang merusak ozon bumi kita.

Sejarah Global Warming

Tahukah anda bahwa Global Warming atau pemanasan global itu sudah menjadi dua generasi? Secara sains, dibuktikan bahwa Global Warming pertama kali adalah saat bumi yang dulunya disebut dengan pangea terpecah-pecah karena banjir besar yang melanda bumi. Di dalam sejarah, saat itu adalah saat dimana sebelum masehi atau B.C.
Nah, Global Warming mulai muncul kembali setelah itu. Saat bumi mulai me-recovery dirinya, mulailah tumbuh kehidupan baru. Munculnya kehidupan baru, mulailah kembali Global warming ke dunia ini.
Pemanasan Global atau Global warming, mulai menunjukan eksistensinya atau mencapai tingkat di atas normal di era industri dunia. Era industri yang kita kenal bermula dari negara Inggris yang terkenal dengan "The Balck Country" mempercepat permasalahan Global warming ini. Limbah-limbah hasil dari pembakaran, serpihan udara yang kotor mempercepat emisi gas karbon.
Mulai dekade 1900an mulai tercipta mobil-mobil, kendaraan cepat dan benda-benda yang melakukan pembakaran. Mulailah Global Warming semakin cepat dan semakin cepat. Teknologi yang berkembang semakin maju, limbah yang dikeluarkan juga semakin banyak dan merusak. Belum lagi masalah penebangan hutan secara ilegal memperparah global warming.
Untuk itu mari kita mengurangi permasalahan GLOBAL WARMING ini.
 
Custom Search